Reach
Ilika plc
("Ilika" or the "Company")
Goliath Prototypes Demonstrate Superior Safety
Independent assessment by University College London: Results exceed expectations
Goliath prototypes withstand test without exploding or overheating, unlike lithium-ion cells
Ilika (AIM: IKA), an independent global expert in solid state battery technology, announces that safety tests undertaken by independent expert assessors have demonstrated the superior safety of Goliath solid state cell battery prototypes relative to lithium-ion equivalent batteries.
University College London carried out the nail penetration test, a standard battery safety assessment , on Ilika's Goliath P1 prototype cells. This destructive test creates an internal electrical short-circuit inside a cell by piercing the cell with a metal nail. The test simulates a catastrophic incident that would typically cause energy-dense lithium-ion cells with lithium nickel manganese cobalt oxide ("NMC") cathode chemistry (, to dangerously swell, rupture, explode, and catch fire in a process known as thermal runaway, often leading to temperatures above 600°C. Goliath P1 cells also use high-energy NMC cathode chemistry, however in the nail penetration tests the P1 cells neither exploded nor caught fire, with external temperatures remaining below 80°C.
With electric vehicles ("EVs") expected to play a key role in the NetZero transition, solid state batteries are anticipated to provide a safer battery solution for next-generation EVs. It is expected that a combination of improved safety performance and high energy density will reduce the complexity of battery packs. The reduction of parasitic packaging is, in turn, expected to lead to lighter and safer vehicles with longer driving range.
Testing was carried out as part of a short collaborative study, in association with the Faraday Institution SafeBatt project, which aims to develop an improved understanding of safety in next generation battery technologies. The study involves Ilika alongside researchers from the University of
A video of the test can be found here.
Graeme Purdy, Ilika CEO, stated: "Ilika has designed solid state cells intended to provide a safer alternative to high-energy lithium-ion batteries. Thanks to SafeBatt and this study, we have now observed test results which contribute to a growing body of evidence demonstrating Goliath's superior safety performance."
Dr James Robinson, Lecturer in Advanced Propulsion at University College London and Safebatt Project Leader, said: "These early results have exceeded our expectations in terms of cell safety. While there is still further testing to be undertaken, there seems to be an inherent safety advantage in nail penetration tests for this cell type over conventional state-of-the-art cells."
Professor Paul Shearing, Statutory Professor in Sustainable Energy Engineering at the University of
For more information contact: |
|
|
Ilika plc |
||
Graeme Purdy, Chief Executive |
Via Walbrook PR |
|
Jason Stewart, Chief Financial Officer |
|
|
|
|
|
|
|
|
|
|
|
Panmure Liberum Limited (Nomad and Joint Broker) |
Tel: 020 3100 2000 |
|
Andrew Godber, John More, |
|
|
Nikhil Varghese, Josh Borlant |
|
|
|
|
|
|
|
|
Joh. Berenberg, Gossler & Co. KG (Joint Broker) |
Tel: 020 3207 8700 |
|
Mark Whitmore, Detlir Elezi, |
|
|
Natasha Ninkov |
|
|
|
|
|
|
|
|
Walbrook PR Ltd |
Tel: 020 7933 8780 / Ilika@walbrookpr.com |
|
Nick |
Mob: 07748 325 236 |
|
About Ilika plc - https://www.ilika.com.
Ilika specialises in the developing and commercialisation of solid state batteries. The Company's mission is to rapidly develop leading-edge IP, manufacture and license solid state batteries for markets that cannot be addressed with conventional batteries due to their safety, charge rates, energy density and life limits. The Company achieves this by using ceramic-based lithium-ion technology that is inherently safe in manufacture and usage, higher thermal tolerance and easier to recycle which differentiates our products from existing batteries.
The Company has two product lines. Its Stereax batteries which are designed for powering miniature medical implants, industrial wireless sensors and specialist internet of Things (IoT) applications and the Goliath large format batteries designed for EV cars and cordless appliances.
About the University of
Through its research commercialisation arm, Oxford University Innovation,
About the Faraday Institution
The Faraday Institution is the
For more information on the Faraday Institution, visit www.faraday.ac.uk and follow @FaradayInst on twitter (X).
RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our Privacy Policy.